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ABSTRACT

Health disparity is a critical issue, with access to health opportuni-
ties unevenly distributed across populations. The Virginia Health
Opportunity Index (HOI) provides a comprehensive measure of
the social determinants of health (SDH), yet its complex compu-
tation limits its applicability beyond Virginia. This research aims
to simplify the HOI calculation process and extend its utility to
other states by developing a Supervised Learning (SL) model using
readily available data from the American Community Survey (ACS).
We acquire and process ACS data for Virginia, train and validate
a Random Forest model to predict HOI, and test its applicability
in North Carolina and California. Our model demonstrates robust
performance, with positive correlations between predicted HOI
and life expectancy and low p-value in all states tested. This study
has implications for public health policy, enabling more accessi-
ble and generalizable tools for assessing health opportunities and
facilitating targeted interventions to promote health equity.
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learning by regression; « Applied computing — Health infor-
matics.

KEYWORDS

HOI, Supervised learning, Feature learning, Regression Tasks

ACM Reference Format:

Zhiyuan Song, Zihan Mei, Liran Li, and N. Rich Nguyen. 2024. SL4HOI:
Supervised Learning for Predicting Health Opportunity Index across States.
In Proceedings of (KDD-UC ’24). ACM, New York, NY, USA, 8 pages. https:
//doi.org/XXXXXXX XXXXXXX

*Zhiyuan, Zihan, and Liran are undergraduate students. They contributed equally to
this research. Professor N. Rich Nguyen is the research advisor.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

KDD-UC 24, August 25-29, 2024, Barcelona, Spain

© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-XXXX-X/18/06

https://doi.org/XXXXXXX.XXXXXXX

Zihan Mei"
University of Virginia
Charlottesville, Virginia, United States
zm4hy@virginia.edu

N. Rich Nguyen
University of Virginia
Charlottesville, Virginia, United States
nn4pj@virginia.edu

1 INTRODUCTION

Health is a fundamental human right and a critical component of
overall well-being [1]. However, access to health opportunities is
not evenly distributed across populations, leading to disparities in
health outcomes [2]. To address this issue, it is essential to develop
tools that can accurately assess and predict health opportunities at
a granular level. The Virginia Health Opportunity Index (HOI) is
one such tool that provides a comprehensive measure of the social
determinants of health (SDH) across the state of Virginia [3, 4].

The HOI is a complex measure that incorporates over 30 vari-
ables, 13 indicators, and four profiles to create a single, composite
index. While the HOI offers valuable insights into health opportuni-
ties, its computation relies on intricate data processing techniques,
limiting its accessibility and applicability beyond Virginia [3].

This study aims to simplify the HOI calculation process and
extend its utility to other states by developing a machine learn-
ing model that can predict HOI using readily available data from
the American Community Survey (ACS) [5]. By leveraging ma-
chine learning techniques, we seek to create a more accessible and
generalizable tool for assessing health opportunities information,
enabling policymakers, public health professionals, and researchers
to identify areas of need and develop targeted interventions to
improve health outcomes [6, 7].

Our approach involves acquiring and processing ACS data for
Virginia, training and validating a machine learning model to pre-
dict HOI and testing the model’s applicability to other states (North
Carolina and California). We evaluate the model’s performance
using various metrics and validate its usefulness by examining the
correlation between predicted HOI and life expectancy data from
the Institute for Health Metrics and Evaluation (IHME) [8, 9].

The development of a streamlined model for predicting HOI
democratizes access to this index, facilitating its use in diverse
contexts and contributing to the development of evidence-based
public health policies and interventions [10]. By identifying ar-
eas with lower predicted HOI values, policymakers can allocate
resources to address health disparities and promote health equity
across communities.

2 RELATED WORK

The Virginia Health Opportunity Index (HOI) is a compre-
hensive tool developed by the Virginia Department of Health to
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measure SDH and identify health disparities across the state of Vir-
ginia. [3, 11]. Ogojiaku et al’s study, "The Health Opportunity Index:
Understanding the Input to Disparate Health Outcomes in Vulnera-
ble and High-Risk Census Tracts" [3], offers a detailed analysis of
the HOL Their research highlights how the HOI can pinpoint areas
with significant health disparities, enabling targeted public health
interventions. The study emphasizes the complexity of the HOI,
noting that its calculation involves extensive data processing and
integration of various socioeconomic and environmental factors.
Other notable indices include:

e Social Vulnerability Index (SVI): An index used to evaluate
community-level vulnerability and resilience, primarily in the
context of disaster response and healthcare accessibility [12].

e Area Deprivation Index (ADI): A census-based measure
gauging regional deprivation and its influence on health [13].

Both indices share a common goal with the HOI: to provide a
detailed understanding of the SDH and to help design better public
health strategies [3, 12, 13].

Predictive Models in Public Health. Machine learning models
have been increasingly utilized in public health to predict outcomes
and identify patterns within complex datasets [6]. Ensemble meth-
ods like Random Forests and XGBoost have shown high efficacy
in capturing non-linear relationships within health data [14, 15].
These models are particularly useful for handling high-dimensional
data and making accurate predictions.

Public Health Policy Applications. The application of pre-
dictive models in public health policy has significant implications
for resource allocation, intervention planning, and prioritization
of under-developed regions. Predictive analytics have been effec-
tively used to guide public health strategies and improve health
outcomes [16]. For instance, predictive models have been employed
to allocate resources during the COVID-19 pandemic, ensuring that
interventions are targeted at the most vulnerable populations [17].

Building on the foundational work of Ogojiaku et al. [3] and
leveraging insights from machine learning and public health policy
research, our study aims to enhance the applicability of the HOIL

3 METHODOLOGY

To ensure the reliability and robustness of our model in predicting
the HOI and its applicability across various states, we implemented
comprehensive testing methods. This included rigorous steps in
data collection, data preprocessing, model training, and testing.

3.1 Data set

To reduce the need for extensive data pre-processing and enhance
accessibility beyond Virginia, we chose to use raw data from the
ACS, instead of using the processed data provided by the Virginia
Department of Health [18, 19]. This shift enables us to develop
a more general model for predicting HOI, making it usable for
ordinary individuals and applicable across various states.

For this study, we specifically gathered data concerning Census
tracts in Virginia for the period from 2013 to 2017, aligning with
the time frame of the VDH_VA_HOI dataset. Out of 249 available
tables, we meticulously selected 21 tables that are closely related to
health conditions [20]. This selection includes data on employment
status, poverty status, and health insurance coverage, among others.
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Table 1: Summary of Datasets Used in the Study

Dataset Name Description

VDH_VA_HOI = Health Opportunity Index Dataset for Virginia
ACS_VA 2013-2017 ACS Virginia data

ACS CA 2013-2017 ACS California data

ACS_NC 2013-2017 ACS North Carolina data

A complete list of the tables utilized in our study is detailed in the
appendix of this paper.

After acquiring Virginia data from the American Community
Survey (ACS), we integrated the HOI values from the VDH_VA_HOI
dataset into the ACS_VA dataset based on matching census tracts.
This integration allowed us to train and validate regression learning
models to predict the HOI accurately.

Using a similar approach, we acquired the 2013-2017 ACS data
for California, referred to as the ACS_CA dataset. We ensured that
the features in the ACS_CA dataset precisely matched those in
the ACS_VA dataset to maintain consistency in the model applica-
tion. Additionally, we acquired the 2013-2017 ACS data for North
Carolina (ACS_NC) in the same manner to further test the general-
izability of our model.

3.2 Data processing

The data acquired from ACS require processing before they are suit-
able for model training. However, our approach contrasts sharply
with the extensive data transformations typically performed by the
Virginia Department of Health, which involve numerous complex
statistical methods [3].

e Dealing with Missing Data: Our dataset contains some columns
and entries with missing values. To address this, we have im-
plemented a succinct approach: where data is absent, we either
remove these entries or impute the missing values with the
median of the corresponding data.

o Feature Selection: To enhance the model’s performance and
interpretability, we selected features with a correlation coef-
ficient of at least 0.25 with the HOL This threshold ensures
that only variables with a meaningful relationship to HOI are
included, thereby reducing noise and focusing on the most
impactful predictors.

o Combining Features: ACS provides an extensive breakdown
of variables such as income levels and housing prices, often
including dozens of columns for a single parameter. To stream-
line our analysis and reduce complexity, we have consolidated
these classifications into three broad categories: low, medium,
and high. This helps us to avoid overfitting when training our
model. An example is illustrated in 1.

o Scaling: The data exhibit considerable variability in measure-
ment scales. To mitigate potential issues during model training
arising from this heterogeneity, we employ a Standard Scaler
[21]. This scaling process normalizes the data, ensuring that
all features contribute equally to the model’s performance and
improving the reliability of our predictions.

e Principal Component Analysis (PCA): Our dataset con-
tained 54 features after previous data processing steps, which
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Figure 1: Example of column aggregation

is still highly complex. Consequently, PCA [22] was applied to
reduce the dimensionality of the dataset and enhance model
performance, since many of the features are highly unrelated.
By transforming the original features into a set of uncorrelated
components, PCA captures the most significant variance with
fewer dimensions, simplifying the model and reducing compu-
tational complexity. This approach is consistent with previous
studies on the HOI, "The Health Opportunity Index: Under-
standing the Input to Disparate Health Outcomes in Vulnerable
and High-Risk Census Tracts" [3], which also utilized PCA for
data reduction and simplification.

In this study, we chose a threshold of 99% variance for PCA.
The choice of 99% variance ensures that almost all the informa-
tion from the original dataset is retained, providing a balance
between dimensionality reduction and information retention.
PCA helps to reduce the dataset from 54 features to 35, simpli-
fying the model and making it computationally more efficient.
Additionally, fewer components reduce the risk of overfitting,
leading to better generalization of new data.

The scree plot (Figure 2) demonstrates that the cumulative
explained variance increases rapidly with the first few compo-
nents and then plateaus. By the 35th component, 99% of the
total variance is captured, indicating that these 35 components
retain nearly all the information from the original dataset while
reducing dimensionality [23].

The 3D PCA scatter plot comparison (Figure 3) shows the dis-
tribution of data points in the first three principal components
for both the full set of components and the 35 components that
capture 99% variance. The plots illustrate that reducing the
number of components to 35 does not significantly alter the
overall structure and spread of the data, confirming that the
chosen components sufficiently represent the original dataset.

3.3 Training Model for Virginia

We trained regression models for predicting Virginia’s HOI values
based on ACS_VA and VDH_VA_HOI datasets. We chose to focus
on tree-based models due to their efficiency and effectiveness in
making predictions [24]. Specifically, we tried Decision Tree, Ran-
dom Forest, and XGBoost models [25]. Linear regression was not
considered ideal for this study because our study works in high
dimensional settings [26]. The complexity and interactions between
different SDH focus on non-linear, making tree-based models more
suitable in our setting [27, 28].

To optimize the performance of our model, we employed a grid
search technique [29] combined with 5-fold cross-validation [30]
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Figure 2: Scree plot: Explained Variance by PCA Components
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Figure 3: Comparison of 3D PCA Scatter Plots: All Compo-
nents vs. 35 Components (99% Variance)

to conduct the fine-tuning process. This approach enables us to sys-
tematically explore a wide range of hyperparameter combinations
to identify the set that yields the best performance. By utilizing
cross-validation, we effectively minimize the risk of overfitting,
ensuring that our model generalizes well to new, unseen data. This
method not only enhances the accuracy of our predictions but also
bolsters the reliability of the model across different datasets.

3.4 Validity Test using Life Expectancy

To show that the predicted HOI of our model indeed reflects the
health conditions of an area, we utilize health condition data from
the Institute for Health Metrics and Evaluation (IHME) [9], which
provides the life expectancy of each county across the US [3]. One
of the critical ways to measure the effectiveness of the HOI is by
examining its relationship with life expectancy [3]. Life expectancy
at birth is a comprehensive indicator that reflects the cumulative
impact of various health determinants over a person’s lifetime [3].

To align our model’s output with IHME data, we aggregated the
predicted HOI values from Census Tracts up to the county level by
calculating the weighted average of our predicted HOI, using the
total population as the weight factor. Then we test the correlations
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Linear Regression: Life Expectancy vs Predicted HOI
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Figure 4: Correlations between the weighted average of pre-
dicted HOI and life expectancy for counties in Virginia

and p-values between our predictions and the life expectancy data
from IHME using a simple linear regression model [31, 32].

3.5 Testing Applicability to Other States

To establish that our model can be effectively utilized beyond Vir-
ginia, we will evaluate its performance in two other states, following
the methodology previously described. We choose the following
two states for our analysis:

o North Carolina: North Carolina is chosen for its similarities to
Virginia in terms of economic status, population demographics,
and health policies [33]. We anticipate that our model will
integrate seamlessly in this state, providing a robust test of its
effectiveness in comparable settings.

¢ California: In contrast to North Carolina, California represents
a diverse scenario with significant differences from Virginia,
especially in terms of geographic location, economic structure,
and demographic composition. Evaluating our model in Cali-
fornia will shed light on its adaptability and reliability in more
varied and challenging environments.

4 RESULTS

Following the experimental procedures outlined previously, this
section will present the outcomes of our study. We will demonstrate
the effectiveness of our model in accurately predicting the HOL
Our analysis will detail how the model performs across different
states and discuss key insights that emerged from the correlation
between our predicted HOI and life expectancy.

4.1 Model Selection

Based on the result of model training displayed in Table 2, the
Random Forest model emerged as the most effective, achieving a
Mean Squared Error (MSE) of 2.81 x 10~3 (HOI is measured under a
scale of 0-1 [3]) and an R-square value of 0.622 [34, 35]. While these
metrics are not perfect, they remain significant. It is essential to
recognize that the HOI is inherently a relative measure, designed to
assess comparative health conditions across different areas. Conse-
quently, even with the variability introduced by using less processed
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Table 2: General Model Performance

Model MSE MAE R?

521x 1072  0.405
419% 1072 0.622
4.25%x 1072 0.610

Decision Tree ~ 4.42x 1073
Random Forests 2.81 x 1073
XGBoost 2.90 x 1073

Table 3: Statistics about the correlation between the weighted
average of predicted HOI and life expectancy for counties in
Virginia

correlation coef p-value

0.534 6.92 x 1011

data, the model’s predictions remain practically valuable. The re-
sults underscore that the predicted HOI values are consistent and
informative regarding the health status of an area.

4.2 Application to Virginia

After we applied the life expectancy metric to validate Virginia’s
predicted HOI, we found that despite the moderate positive cor-
relation coefficient of 0.534 between our predicted HOI and life
expectancy, the p-value [36] of 6.92 x 10~!1 confirms a statistically
significant association (p < 0.05) [37], supporting the notion that im-
proved health opportunities do contribute to higher life expectancy
in Virginia. However, it’s important to note that life expectancy
[38] is influenced by a multitude of factors, including healthcare
access, socioeconomic status, and public health policies [39-41].
Our model serves as a valuable tool in identifying areas where
interventions can potentially enhance health outcomes.

From this analysis, it is clear that our Random Forest model,
which predicts the HOI using raw data from the ACS, is both de-
pendable and valuable. Despite the simplification in data processing,
the model effectively identifies and quantifies health opportunities
across different areas. This capability makes it an essential tool
for uncovering underlying health issues within communities and
provides actionable insights that can guide improvements in public
health initiatives.

4.3 Application to other states

To evaluate the applicability and effectiveness of our model beyond
Virginia, we conducted performance tests using life expectancy
data in two other states: North Carolina and California. By follow-
ing the established data processing steps and testing procedures,
we ensured a consistent approach across different geographical
contexts. The results from these tests are presented below:

4.3.1  North Carolina. Our analysis demonstrates a moderate posi-
tive linear relationship between the predicted Health Opportunity
Index and life expectancy for North Carolina (NC), with a correla-
tion coefficient of 0.559. P-value of 3.25 x 102 (p < 0.05) shows it
is statistically significant which supports the hypothesis that our
model is robust and can be effectively applied to regions beyond
Virginia (at least for those states that share similarity with Virginia).
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Figure 5: Correlations between the weighted average of pre-
dicted HOI and life expectancy for counties in North Carolina
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Figure 6: Correlations between the weighted average of pre-
dicted HOI and life expectancy for counties in California

4.3.2  California. The correlation coefficient for California stands
at 0.615, underscoring the model’s ability to generalize across di-
verse economic and cultural contexts. This robust correlation and
P-value of 2.82 x 1077 (p < 0.05) indicates that our model retains its
predictive accuracy and relevance even in states that differ signifi-
cantly from Virginia in terms of economic, cultural, and political
characteristics. This means that our model can even be applied to a
wider range of regions.

4.4 Outliers analysis

Contrary to our initial expectations, the correlation coefficients ob-
tained from testing the model across different states revealed an in-
teresting pattern. Specifically, California demonstrated the highest
correlation coefficient between predicted HOI and life expectancy
at 0.615, followed by North Carolina with 0.559, and Virginia with
the lowest at 0.534. This outcome was unexpected, as we anticipated
the highest correlation in Virginia, followed by North Carolina, due
to their similarities, and the lowest in California, since we trained
our model entirely based on Virginia’s data.
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Table 4: Statistics about the correlation between the weighted
average of predicted HOI and life expectancy for counties in
North Carolina

correlation coef ~ p-value

0.559 3.25x 1077

Table 5: Statistics about the correlation between the weighted
average of predicted HOI and life expectancy for counties in
California

correlation coef ~ p-value

0.615 2.82x 1077

To understand this phenomenon, we conducted a detailed analy-
sis of the outliers in each state’s data (Shown in Figures 7, 8, and
9). We used the Z-score method of determining the outliers, with a
threshold of 1.5 (This means data points with an absolute value of
residuals exceeding the standard deviation of the residuals scaled
by 1.5 are defined as outliers). [42, 43]

Our investigation highlighted specific features common among
these outliers that might influence the observed correlations:

e Small size: A significant number of outliers are found in excep-
tionally small counties, with some even encapsulated within
another county. The limited size of these areas may lead to
more fluctuations in HOI and life expectancy, skewing the data
disproportionately. This, in turn, can lead to unexpected pre-
dictions in our model.

e Outlying location: Other outliers are located on the periph-
eries of their respective states. These locations may be subject
to external influences, either from neighboring states or from
environmental factors such as proximity to the ocean, which
could impact health outcomes and corresponding HOI values.

This explains why California, despite its economic and cultural
differences from Virginia, exhibited the highest correlation coeffi-
cient (0.615) among the states tested. Unlike Virginia, which has a
complex county structure with many small counties, California has
fewer counties with larger average sizes. This structural difference
results in fewer outliers in California, enhancing the consistency
of our model’s predictions in this state.

This observation reveals that while our model was developed
exclusively with Virginia data, it is capable of adapting effectively
to other states, often with equal or superior performance. However,
the results also highlight the model’s sensitivity to local conditions,
such as county size and structure, which can significantly impact
its predictive accuracy.

5 DISCUSSION

The discussion section delves into the broader implications of our
findings and explores the practical applications, limitations, and
future directions for our study. This comprehensive examination
is crucial for understanding the potential impact and areas for
enhancement of our work.
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5.1 Application

The real-world applications of using our model to predict the HOI
extend beyond Virginia and have broader implications for public
health research and practice. Leveraging readily available data from
sources like the ACS can streamline the prediction process for
HOI, facilitating the development of nationwide evidence-based
policy recommendations aimed at improving overall public health
outcomes [10]. By targeting interventions towards areas identified
as most disadvantaged, communities facing health disparities can
receive the necessary support and resources to enhance their well-
being [3]. Using existing ACS data also minimizes the need for
extensive data collection efforts, reducing costs and time associated
with model development.

5.2 Limitation and Future Work

We may need access to more years of data to improve the accu-
racy and relevance of our predictions. Our current study relies on
2013-2017 ACS data. Collecting and analyzing more recent data,
including post-pandemic datasets, will help refine and validate the
HOI prediction model, ensuring it remains relevant and accurate in
current contexts. Future work should focus on acquiring and ana-
lyzing updated ACS data to refine and validate the HOI prediction
model. In this case, our model can be integrated into public health
surveillance systems to continuously monitor changes in HOI over
time, enabling early detection of emerging health disparities and
allowing for timely interventions to mitigate their impact on popu-
lation health, especially considering the potential changes in health
opportunities due to events like the COVID-19 pandemic [44].

Incorporating deep learning models may further enhance the
accuracy and predictive power of the HOI model [45]. While our
current approach using random forests has shown promise, deep
learning techniques could capture more complex patterns within
the data, potentially leading to more precise predictions.

We may also need to consider more metrics for evaluating the
model’s performance. Currently, we use life expectancy as a valida-
tion metric, but additional metrics such as Potential Years of Life
Lost (PYLL) and other health outcome indicators could provide a
more comprehensive assessment of the model’s effectiveness [46].
These additional metrics would offer deeper insights into the public
health implications of the predicted HOI values and help validate
the model’s utility in different contexts.

6 CONCLUSION

Our findings highlight the effectiveness of the Random Forest model
in predicting HOI, achieving a moderate positive correlation with
life expectancy data. The successful application of our model to
North Carolina and California demonstrates its robustness and
adaptability. The model’s ability to generalize across different states
underscores its potential as a valuable tool for public health anal-
ysis and policy-making despite its sensitivity to local geographic
and demographic characteristics [10]. By continuously refining
the model and expanding its applicability, we can contribute to
the development of evidence-based public health policies and the
promotion of health equity across states.
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A REPRODUCIBILITY

To reproduce our results, please visit the GitHub repository created
for this project. The repository details how data was converted
into a usable format for the models, how to use our code to train
the models, and how to directly implement them. The repository
contains a Jupyter Notebook that provides a comprehensive, step-
by-step analysis from data acquisition to the final results.

e Data Preparation: Instructions on how to convert raw data
into a format suitable for model training.

e Model Training: Guidelines on using our code to train
the models, including hyperparameter settings and training
procedures.

e Implementation: Steps to implement the trained models
and reproduce the results presented in the paper.

You can find the repository at the following URL: https://github.

com/LiranLizqj6pe/SL4HOI-Supervised-Learning-for-Predicting-Health-

Opportunity-Index-across-States.git

B LIST OF FEATURES
B.1 Raw Features Selected

The following features were selected from Social Explorer Tables:
ACS 2017 (5-Year Estimates):

A00002: Population Density (Per Sq. Mile)

A00001: Total Population

A10003: Average Household Size

A10003B: Average Household Size of Renter-Occupied Hous-

ing Units

e A12004: School Enrollment for the Population 3 Years and
Over

e A12003: School Dropout Rate for Population 16 to 19 Years

e A17005: Unemployment Rate for Civilian Population in La-
bor Force 16 Years and Over

e A14001: Household Income (In 2017 Inflation Adjusted Dol-
lars)

e A14010: Median Family Income (In 2017 Inflation Adjusted
Dollars)

e A14028: Gini Index of Income Inequality

e A10038: Monthly Housing Cost (Renter-Occupied Housing
Units)

e A17002: Employment Status for Total Population 16 Years
and Over

e A10003B: Age of Householder (Renter-Occupied Housing
Units)

e A10039B: Monthly Housing Costs as a Percentage of House-
hold Income in the Past 12 Months (Renter-Occupied Hous-
ing Units)

e A13002: Poverty Status in 2017 of Families by Family Type
by Presence of Children Under 18 Years

e A13003A: Poverty Status in 2017 for Children Under 18

e A13003B: Poverty Status in 2017 for Population Age 18 to
64

e A13003C: Poverty Status in 2017 for Population Age 65 and
Over

e A13004: Ratio of Income in 2017 to Poverty Level

e A20001: Health Insurance

C LIST OF OUTLIERS

C.1

C.2

C3

Virginia
Alexandria
Arlington County
Buena Vista
Charlottesville
Colonial Heights
Emporia
Fredericksburg
Hanover County
Harrisonburg
King William County
Lexington
Lynchburg
Norton
Poquoson
Radford
Williamsburg

California

Del Norte County
Fresno County
Glenn County
Imperial County
Tulare County

North Carolina

Chatham County
Clay County
Currituck County
Iredell County

Lee County
Mecklenburg County
Northampton County
Perquimans County
Tyrrell County
Union County

Wake County
Washington County

Song, Mei, Li, and Nguyen
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